ISO/IEC TS 18661
OVERVIEW

23 |EEE Symposium on Computer Arithmetic — ARITH23
July 13, 2016

Jim Thomas
jaswthomas@sbcglobal.net
Davis, CA USA

L
ISO/IEC Technical Specification 18661

C extensions to support IEEE 754-2008

Floating-point and C standards

C90

Background

Specify a C binding for IEEE 754-2008

- Work began 2009

- Under direction of ISO/IEC JTC1/SC22/WG14 - C

- Expertise in floating-point and language standards,
compilers, libraries

Principles

- Support all of IEEE 754-2008, as-is

- Specify as changes to C11

- Use existing C mechanisms, minimize language invention
- Develop specification in parts, to pipeline process

- Supersede TR 24732

- Deliver an ISO/IEC Technical Specification

D
Status

- In five parts

1 Binary floating-point arithmetic
Decimal floating-point arithmetic
Interchange and extended types
Supplementary functions
Supplementary attributes

- Parts 1-4 published in 2014-2015
- Part 5 approved, publication expected in 2016

O B WODN

Publications

ISO/IEC TS 18661-1:2014, Information technology — Programming languages,
their environments and system software interfaces — Floating-point extensions for
C — Part 1: Binary floating-point arithmetic

ISO/IEC TS 18661-2:2015, Information technology — Programming languages,
their environments and system software interfaces — Floating-point extensions for

C — Part 2: Decimal floating-point arithmetic

ISO/IEC TS 18661-3:2015, Information technology — Programming languages,
their environments and system software interfaces — Floating-point extensions for
C — Part 3: Interchange and extended types

ISO/IEC TS 18661-4:2015, Information Technology — Programming languages,
their environments, and system software interfaces — Floating-point extensions
for C — Part 4: Supplementary functions

Expected

ISO/IEC TS 18661-5:2016, Information Technology — Programming languages,
their environments, and system software interfaces — Floating-point extensions

for C — Part 5: Supplementary attributes

D
Part 1

- TS 18661-1 — Binary floating-point arithmetic
- Required parts of IEEE 754-2008 for binary formats

- Binds 754 binary32 and binary64 formats to C £loat
and double types

- Binds all 754 required operations to C operators and
library functions

- Some example of new features ...

D
Part 1

Conversions

iIntegers
all widths

signed and unsigned
‘ for each rounding dir

w/ and w/o inexact
\ character sequences
decimal and hexadecimal
for free-standing too

floating types

Examples

intmax t fromfp(double x, int round, unsigned int width);

int strfromd(char * restrict s, size t n,
const char * restrict format, double fp);

D
Part 1

Functions that round results to narrower type

add
subtract double

multiply | * ‘
—

float

divide "
fma long double
sqrt

float
double

Example

float ffma (double x, double y, double z);

D
Part 1

More classification and comparison macros

issubnormal ()
issignaling()
iscanonical ()
iseqgsig() - test equality, signal invalid on NaN input

Better NaN support

getpayload() setpayload() setpayloadsig()
Signaling NaN macros
Optional signaling NaN support

More facilities for exception flags and modes

fesetexcept () fetestexceptflag()
femode t fegetmode () fesetmode ()

D
Part 1

Other functions, including

roundeven () — 754 round to nearest (ties to even) integer in floating format
nextup () — next larger representable number

nextdown () — next smaller representable number

fmaxmag () — argument of maximum magnitude

fminmag () — argument of minimum magnitude

totalorder () — total ordering of canonical encodings

totalordermag () — total ordering of magnitudes of canonical encodings

D
Part 1

Binds 754 rounding direction attribute to new constant
mode pragma

{
#pragma STDC FENV_ROUND FE TOWARDZERO

z = sqrt(x + y);

An alternative to dynamic rounding mode
{

int save_round;

save_round = fegetround() ;
fesetround (FE_TOWARDZERO) ;
z = sqrt(x + y);
fesetround (save_ round) ;

Part 2

TS 18661-2 — Decimal floating-point arithmetic
Required parts of IEEE 754 for decimal

Full C and 754 support for 32, 64, 128 bit decimal formats
Types
Built-in operator
Functions, macros, pragmas
Constants
I/O width modifiers

Including support for 754 quantum for decimal

Exact operators and math functions produce the preferred quantum
exponent, e.g., 1.07 + 0.13 = 1.20, not 1.2

%$a, %A output and all input preserve quantum exponents

D
Part 2

_Decimal64 rate = 175.DD, hours, fee, total = 0.00DD;

scanf (“$De”, &hours) ;

{
#pragma STDC FENV _DEC ROUND FE DEC TONEARESTFROMZERO

fee = rate * hours;
fee = quantized64 (fee, 0.00DD); // round to cents

}
total += fee;

printf (“$Da\n”, total);

D
Part 2

Uses encode/decode functions and unsigned char
arrays to handle external data in either of the two 754

encodings of decimal data

_Decimal32 x, y;
unsigned char encoding[32/8];

... read decimal-encoded decimal into
encoding

decodedecd32 (&x, encoding) ;
... use x, compute y
encodebind32 (encoding, &y);

... write binary-encoded decimal from
encoding

Conformance

- Implementation may conform to Part 1 or Part 2 or both
- Then may conform to Parts 3, 4, and 5 in any combination

- Supportable by hosted or free-standing C
iImplementations

Part 3

TS 18661-3 — Interchange and extended types
Optional IEEE 754 interchange and extended formats
Interchange formats may be arithmetic or not

Full* 754 and C support for unlimited number of fixed width
arithmetic interchange formats, including float16

And for extended formats which have more range and precision
than basic formats in Parts 1 and 2

Mechanisms for interchange of data in 754 formats that are
supported but not as arithmetic

Binary and decimal formats

* 1/O with strings using strto and strfrom functions, instead of with
more width modifiers

Part 3

standard floating types

C real floating types

float

double

long double

Other floating binary decimal
types
interchange _FloatN, _DecimalNN,
N=16,32,64,128, N=32,64,96,128,
160,... 160,...
extended _FloatNx, _DecimalNNx,
N=32,64,128 N=64,128

D
Part 3

- Non-arithmetic interchange formats supported by
conversion functions and unsigned char arrays

- Example — suppose implementation supports float16 as
non-arithmetic format ...

_Float32 x;
unsigned char encl6[16/8];
unsigned char enc32[32/8];

... store float16 encoding in encl6

£f32encfl6 (enc32, enclé6) ;
decodef32 (&x, enc32);

D
Part 4

- TS 18661-4 — Supplementary functions

- Mathematical functions
- 754 recommends correct rounding

- TS adds all the ones not already in C11
- TS reserves names for correctly rounded versions

Defines double sinpi (double x) ;
Reserves crsinpi

- Reduction operations
- sum reductions
- scaled products
- 754 does not prescribe correct rounding, or reproducibility

D
Part 4

New math functions

exp2ml rsqrt asinpi
explO compound atanpi
explOml rootn atan2pi
logpl pown cospi
log2pl powr sinpi

loglOpl acospi tanpi

D
Part 4

New reduction functions

reduc_sum scaled_prod
reduc_sumabs scaled prodsum
reduc_sumsq scaled_proddiff

reduc_sumprod

Examples

double reduc_sum(size_t n, const double p[static n]);
returns 2,4 ,_1P[i]

double scaled_prodsum(size t n, const double p[static restrict n],
const double q[static restrict n], intmax_t * restrict sfptr);

returns pr such that pr x bs"=[1._, ,_1(p[i] + q[i])

D
Part 5

- TS 18661-5 — Supplementary attributes
- /54-recommended attributes

- Way for user to specify alternate semantics for a block of
code
- Evaluation formats (wide evaluation)
- Optimization controls
- Reproducible results
- Alternate exception handling
- (Required attributes for constant rounding modes in Parts 1 and 2)

- All done with pragmas, like other FP attributes already Iin
C

D
Part 5

Evaluation formats

#pragma STDC FENV FLT EVAL METHOD width
#pragma STDC FENV DEC EVAL METHOD width

width matches a value of the FLT EVAL METHOD or DEC_EVAL METHOD
macro

#pragma STDC FENV_FLT EVAL METHOD 0
... operations evaluated to type (no extra range or precision)

Part 5

Optimization controls

#pragma
switch

#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
off-switch

#pragma

STDC

STDC
STDC
STDC
STDC
STDC
STDC

STDC

FENV_ALLOW_VALUE_CHANGING OPTIMIZATION on-off-

FENV_ALLOW ASSOCIATIVE LAW on-off-switch
FENV_ALLOW DISTRIBUTIVE LAW on-off-switch
FENV_ALLOW MULTIPLY BY RECIPROCAL on-off-switch
FENV_ALLOW_ZERO_SUBNORMAL on-off-switch
FENV_ALLOW CONTRACT FMA on-off-switch
FENV_ALLOW_CONTRACT OPERATION CONVERSION oOn-

FENV_ALLOW CONTRACT on-off-switch

on-off-switch is one of ON, OFF, DEFAULT

D
Part 5

Reproducible results

#pragma STDC FENV_REPRODUCIBLE on-off-switch

implies the effects of

#pragma STDC FENV_ACCESS ON

#pragma STDC FENV_ALLOW VALUE CHANGING OPTIMIZATION OFF
#pragma STDC FENV FLT EVAL METHOD 0

#pragma STDC FENV DEC EVAL METHOD 1

TS provides guidance for the programmer and recommends compiler
diagnostics

D
Part 5

Alternate exception handling

» Deal with exceptions directly, rather than through flags

#pragma STDC FENV_EXCEPT action except-list

action is one of
DEFAULT NO_FLAG OPTIONAL_FLAG ABRUPT_UNDERFLOW

and these that change control flow ASAP
BREAK
TRY CATCH

and these that change control flow and are deterministic
DELAYED TRY DELAYED CATCH

D
Part 5

#pragma STDC FENV _EXCEPT TRY FE DIVBYZERO, FE OVERFLOW
{
for (int i=0; i<LEN; i++) {
f[i] = 1.0 / d[i];

}
#pragma STDC FENV_EXCEPT CATCH FE DIVBYZERO
{

printf ("divide-by-zero\n") ;
}
#pragma STDC FENV_EXCEPT CATCH FE_ OVERFLOW
{

printf ("overflow\n") ;

B
ISO/IEC TS 18661

- C extensions to support IEEE 754-2008
- Fifth and final part publishes this year

- Substantial portions have been and are being
implemented

- Included in Cyy? Which parts?
- Good for IEEE 754-20187

