Correctly Rounded Arbitrary-Precision
Floating-Point Summation

Vincent LEFEVRE

AriC, Inria Grenoble — Rhéne-Alpes / LIP, ENS-Lyon

ARITH 23, Santa Clara, CA, USA
2016-07-11

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/ziral

Introduction to GNU MPFR

Goal: complete rewrite of the mpfr_sum function for the future GNU MPFR 4.

GNU MPFR in a few words:

o An efficient multiple-precision floating-point library with correct rounding
(and signed zeros, infinities, NaN, and exceptions, but no subnormals).

@ Radix 2. Each number has it own precision > 1 (or 2 before MPFR 4).
@ 5 rounding modes: nearest-even; toward —oo, 400, 0; away from zero.
The functions return the sign of the error: ternary value.

About the GNU MPFR internals:

@ Based on GNU MP, mainly the low-level mpn layer. A multiple-precision
natural number: array of 32-bit or 64-bit integers, called /imbs.

@ Representation of a floating-point number with 3 fields: sign, significand
(array of limbs, with value in [1/2,1]), exponent in [1 — 202 262 — 1].
Special data represented with special values in the exponent field.

mpfr_sum: correctly rounded sum of N numbers (N > 0).

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 2/17

The Old mpfr_sum Implementation

Demmel and Hida’s accurate summation algorithm + Ziv loop.

MPFR 3.1.3 [2015-06] and earlier: mpfr_sum was buggy with different precisions.
Reference here: trunk r8851 / MPFR 3.1.4 [2016-03] (latest release).

Performance issues:

@ The working precision must be the same for all inputs and the output.
— The maximum precision had to be chosen as the base precision (bug fix).

@ The exact result may be very close to a breakpoint. Uncommon case, but. ..
Large exponent range — critical issue (e.g., crashes due to lack of memory).

o High-level for MPFR (mpfr_add calls). — Prevents good optimization.

Specification (behavior) issues:
@ The sign of an exact zero result is not specified.

@ The ternary value is valid only when zero is returned: for some exact results,
one knows that they are exact, otherwise one has no information.

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 3/17

The New mpfr_sum Algorithm and Implementation

Goals:

@ As fast as possible. In particular, the exponent range should no longer matter.
— Low level (mpn), based on the representation of the numbers.

o Completely specified. Exact result 0: same sign as a succession of binary +.

Basic ideas: [r10503, 2016-06-24]
@ Handle special inputs (NaN, infinities, only zeros, Nyegular < 2). Otherwise:
@ Single memory allocation (stack or heap): accumulator, temporary area. ..

@ Fixed-point accumulation by blocks in some window [minexp, maxexp[
(re-iterate with a shifted window in case of cancellation): sum_raw.
Done in two's complement representation.

@ If the Table Maker’s Dilemma (TMD) occurs, then compute the sign of
the error term by using the same method (sum_raw) in a low precision.

@ Copy/shift the truncated result to the destination (normalized).
@ Convert to sign + magnitude, with correction term at the same time.

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 4 /17

https://gforge.inria.fr/scm/viewvc.php/mpfr/trunk/src/sum.c?revision=10503&view=markup

The New mpfr_sum: An Example

Just an example (not the common case), covering most issues (cancellations. ..

Simplification for readability:

@ Small blocks (may be impossible in practice: the accumulator size is a
multiple of the limb size, i.e. 32 or 64).

@ The numbers are ordered (in the algorithm, there are loops over all the
numbers and the order does not matter).

@ We will not show the accumulator, just what is computed at each step.

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11

5 /17

The New mpfr_sum: An Example [2]

MPFR_RNDN (roundTiesToEven), output precision sq = 4.

Niegular = 10 input numbers, each with its own precision:

+0.1011101000010 - 2° + 1011101000010

X0
X1
X2
X3
X4
X5
X6
X7
X8
X9

—0.10001 -
—0.11000011 - 22
.08

—0.11101

—0.11010 -
+0.10101 -
+0.10001 -
—0.10001 -
—0.10000 -
-+0.10000 -

20

279

271000
272000
2—2000
2—3000
2—4000

- 10001

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon)

Correctly Rounded Arbitrary-Precision Summation

11000011

11101
11010

ARITH 23, Santa Clara, 2016-07-11

6/17

The New mpfr_sum: An Example [3]

First iteration: [minexp,maxexp[= [—8, 0] (maxexp: chosen from the maximum
exponent; minexp: chosen from various parameters, see details later).

Only 3 input numbers are concerned:
— minexp = -8
+ 10111010[00010]
- 10001
- 110000[11]

...000000010 (If the signs were reversed: ...111111110, e = -7)
L e=-6

During the same loop over all the input numbers, we compute the next maxexp:
Let 7 ={i: Q(x;) < minexp}, where Q(x) is the exponent of the last bit of x,
be the indices of the inputs that have not been fully taken into account. Then

maxexp2 = sup min(E(x;),minexp) = minexp = —8.
ieT

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]
Vincent LEFEVRE (Inria / LIP, ENS-Lyon)

Correctly Rounded Arbitrary-Precision Summation

ARITH 23, Santa Clara, 2016-07-11 7/17

The New mpfr_sum: An Example [4]

We have computed an approximation to the sum and we have an error bound:

Nyegular - 2"2*°*P2 or 2°7* with err = maxexp2 + [log,(Nregular)]-

The accuracy test is of the form: e — err > prec, where prec is (currently)
sq+3=7. Here, e — err = (—6) — (—8) — [logy(Nreguiar)] < 0 < prec.
— We need at least another iteration.

Second iteration: [minexp,maxexp[= [—17, —8][.

...0010 <+ previous sum (shifted in the accumulator)
+ 00010
- 11

11101
11010

...0000000000000

Full cancellation (here with a big gap: maxexp2 = —1000 < minexp).
— New iteration with maxexp := maxexp2 just like in the first iteration.

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11

8/ 17

The New mpfr_sum: An Example [5]

The next and last 5 input numbers:

xs = +0.10101 271000
x¢ = +0.10001 272000
x; = —0.10001 - 22000
xg = —0.10000 - 23000
xg = +0.10000 - 2—4000

Third iteration: [minexp,maxexp[= [—1008, —1000].
Truncated sum = x5 = +0.10101 - 21000,

e —err = (—1000) — (—2000) — 4 > 7 = prec, so that the truncated sum is
accurate enough, but it is close to a breakpoint (midpoint): TMD.

To solve the TMD:

@ Do not increase the precision (as usually done for the elementary functions),
due to potentially huge gaps (here between x5 and xg).

@ Instead, determine the sign of the “error term” by computing this term to
1-bit target precision, using the same method (prec = 1).

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 9 /17

The New mpfr_sum: An Example [6]

The input numbers used for the error term:

x¢ = +0.10001 -272000
x; = —0.10001 - 272000
xg = —0.10000 - 23000
xg = +0.10000 - 2—4000

First iteration of the TMD resolution: full cancellation between xg and x;.

Second iteration of the TMD resolution: xg; accurate enough — negative.
Correctly rounded sum = +0.1010 - 21000,

Technical note: 2 cases to initiate the TMD resolution.

@ Here, the gap between the breakpoint and the remaining bits is large enough.
We start with a zeroed new accumulator.

@ But a part of the error term may have already been computed in the lower
part of the accumulator. In such a case, the new accumulator is initialized
with some of these bits.

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 10 / 17

The New mpfr_sum: Accumulation (sum_raw)

To implement the steps presented in the example (before rounding). ..

Function for accumulation: sum_raw

Computes a truncated sum in an accumulator such that if the exact sum is 0,
return 0, otherwise satisfying e — err > prec, where e is the exponent of the
truncated sum.

Calls of sum_raw:
@ Main approximation: prec = sq + 3; zeroed accumulator in input.

@ TMD resolution, if necessary: prec = 1 (only the sign of the result is
needed); the accumulator may be zeroed or initialized with some of the
lowest bits from the main approximation.

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 11 /17

The New mpfr_sum: Accumulation (sum_raw) [2]

The accumulator, for the first iteration:
o cq = [logy(Nyegular)] + 1 bits for the sign bit and to avoid overflows.
@ sq bits: output precision.

@ dq > [logy(Nyegular)] + 2 bits to take into account truncation errors.

Example of first iteration and after a partial cancellation (— shift):

[----——-- J]

cq |— maxexp sq + dq minexp —|

Before shift: 00000000000000000000000000001--———=—-=————————]

<--- identical bits (0) --->

<——————- 26 zeros —----—-—- >

After shift: O001----—----------——- 00000000000000000000000000

This iteration: minexp — ': maxexp2 J
Next iteration: maxexp minexp

maxexp2: maximum exponent of the tails (MPFR_EXP_MIN if no tails).

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 12 /17

The New mpfr_sum: Correction (in short)

We now have 3 terms: the sq-bit truncated significand S, a trailing term t in the
accumulator such that 0 < t < 1ulp, and an error on the trailing term.

— The error £ on S is of the form: —273ulp < e < (1 +273)ulp.

4 correction cases, depending on & (from t and possibly a TMD resolution), the
sign of the significand, the rounding bit, and the rounding mode (24 cases):

—1: equivalent to nextDown
0 : no correction
41 : equivalent to nextUp
42 : equivalent to 2 consecutive nextUp

corr —

This is done efficiently with:

@ For sq > 2, one-pass operation on the two's complement significand:
» For positive results: x + corr.
» For negative results: X + (1 — corr).

In case of change of binade, just set the MSB to 1 and correct the exponent.
@ For sq = 1, specific code (but trivial).

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 13 /17

Tests

Tests needed to detect various possible issues:
@ unnoticed error in the pen-and-paper proof (complex due to many cases);
@ coding error, such as typos (without a full formal proof of MPFR);
@ bug in MPFR, such as internal utility macros (this did happen: r9295);
@ bug in compilers;

and to check that some bounds in the pen-and-paper proof are optimal.

Different kinds of tests, including;:
@ Special values (e.g., with combinations of NaN, infinities and zeroes).

@ Specific tests to trigger particular cases in the implementation. Comparison
with the sum computed exactly with mpfr_add then rounded.

@ Generic random tests with cancellations (no full check, though).
@ Tests with underflows and overflows.

@ Check for value coverage in the TMD cases to make sure that the various
combinations have occurred in the tests (this could be improved).

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 14 /17

https://gforge.inria.fr/scm/viewvc.php/mpfr?view=revision&revision=9295

Timings

Comparison of 3 algorithms:
@ sum_old: mpfr_sum from MPFR 3.1.4 (old algo).
e sum_new: mpfr_sum from the trunk patched for MPFR 3.1.4 (new algo).

@ sum_add: basic sum implementation with mpfr_add (inaccurate and
sensitive to the order of the inputs).

Random inputs with various sets of parameters:
e array size n = 10%, 103 or 105;
@ small or large input precision precx (the same one);
@ small or large output precision precy;

@ inputs uniformly distributed in [—1, 1], or with scaling by a uniform
distribution of the exponents in [0, 108[;

@ partial cancellation or not.

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 15 /17

Timings [2]

Inaccurate timings (up to a factor 3 between two calls), but we focus on much
larger factors (theoretically unbounded).

Conclusion:
@ sum_new vs sum_add:
> sometimes slower, due to the accuracy requirements;
» sometimes faster, as low level and low significant bits may be ignored.
@ sum_new Vs sum_old:

» much faster in most cases;

» much slower in some pathological cases: precy < precx and there is a
cancellation, due to the fact that the reiterations are always done in a low
precision (assuming that a reiteration would stop with a large probability).
Change in the future?

Sources and results are provided in the MPFR repository:

https://gforge.inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 16 / 17

https://gforge.inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/

Conclusion and Future Work

Major improvements over the old algorithm and implementation:
@ Much faster in most tested cases (application dependent, though).
@ Much less memory in some cases (no more crashes in simple cases).

o Fully specified, with ternary value (as usual).

Temporary memory: twice the output precision + a few limbs.

For the next MPFR release: GNU MPFR 4.0.

Possible future work:
@ Determine a worst-case time complexity (could be pessimistic).
@ Bad cases could be improved, but this could slow down the average case.

@ What is the average case? Too much context dependent.
— Based on real-world applications?

[arith23.tex 90371 2016-07-10 17:27:32Z vincl7/zira]

Vincent LEFEVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation ARITH 23, Santa Clara, 2016-07-11 17 /17

